DIRECTIONS: Give the common difference and supply the missing terms for each arithmetic sequence.

<u>DIRECTIONS</u>: Give the common ratio and supply the missing terms for each **geometric sequence**.

7.
$$\frac{1}{100}$$
, $\frac{1}{10}$, $\frac{?}{10}$, 10, 100, $\frac{?}{}$

8.
$$\underline{?}$$
, $\underline{?}$, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$, $\frac{1}{81}$

DIRECTIONS: Write the first four terms of the sequence with the given formula. Also write if the sequence is arithmetic, geometric, or neither.

9.
$$a_n = 1 - 2n$$

10.
$$a_n = \frac{1}{n+1}$$

11.
$$a_n = 3^n$$

12.
$$a_n = n^2 - 1$$

<u>DIRECTIONS</u>: Give the next two terms of each sequence by using the pattern in the differences between terms.

<u>DIRECTIONS</u>: Write if the sequence is **arithmetic**, **geometric**, or **neither**. Then supply the missing terms of the sequence.

DIRECTIONS: Write if the sequence is arithmetic, geometric, or neither. Then supply the missing terms of the sequence.

21.
$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{?}{?}, \frac{?}{?}$$

23.
$$4^{1/2}$$
, $4^{3/2}$, $4^{5/2}$, $4^{7/2}$, ? . ?

24.
$$\frac{1}{12}$$
, $\frac{2}{13}$, $\frac{3}{14}$, $\frac{4}{15}$, $\frac{?}{?}$

DIRECTIONS: Find the first four terms of the sequence with the given formula. Then write if the sequence is arithmetic, geometric, or neither.

25.
$$a_n = 4n + 3$$

26.
$$a_n = 2n + 1$$

27.
$$a_n = 3^{n+1}$$

28.
$$a_n = 2 \bullet 3^n$$

29.
$$a_n = \frac{(-2)^n}{8}$$

30.
$$a_n = 13 - 4n$$

31.
$$a_n = \log(n + 1)$$

32.
$$a_n = \log 10^n$$

DIRECTIONS: Find the next two terms of each sequence by using the pattern in the differences between terms.

(#41 is called the Fibonacci Sequence – each term is the sum of the two terms before it. This is one of the most famous sequences in all of mathetmatics!)